|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use SparseVector | |
---|---|
classification | |
sequence | |
types |
Uses of SparseVector in classification |
---|
Methods in classification that return SparseVector | |
---|---|
SparseVector |
CompleteFeatureFunction.apply(SparseVector x,
int y)
|
Methods in classification with parameters of type SparseVector | |
---|---|
SparseVector |
CompleteFeatureFunction.apply(SparseVector x,
int y)
|
Uses of SparseVector in sequence |
---|
Fields in sequence declared as SparseVector | |
---|---|
SparseVector[] |
SequenceInstance.x
|
Methods in sequence that return SparseVector | |
---|---|
SparseVector |
SequenceFeatureFunction.apply(SparseVector[] x,
int[] y)
apply the feature function to an entire sequence of y's |
SparseVector |
OneYwithXFeatureFunction.apply(SparseVector[] x,
int[] y)
|
SparseVector |
TwoYwithXFeatureFunction.apply(SparseVector[] x,
int[] y)
|
SparseVector |
SequenceFeatureFunction.apply(SparseVector[] x,
int ymt1,
int yt,
int t)
apply the feature function to a pair of tags (label positions) |
SparseVector |
OneYwithXFeatureFunction.apply(SparseVector[] x,
int ytm1,
int yt,
int t)
|
SparseVector |
TwoYwithXFeatureFunction.apply(SparseVector[] xseq,
int ytm1,
int yt,
int t)
|
Methods in sequence with parameters of type SparseVector | |
---|---|
SparseVector |
SequenceFeatureFunction.apply(SparseVector[] x,
int[] y)
apply the feature function to an entire sequence of y's |
SparseVector |
OneYwithXFeatureFunction.apply(SparseVector[] x,
int[] y)
|
SparseVector |
TwoYwithXFeatureFunction.apply(SparseVector[] x,
int[] y)
|
SparseVector |
SequenceFeatureFunction.apply(SparseVector[] x,
int ymt1,
int yt,
int t)
apply the feature function to a pair of tags (label positions) |
SparseVector |
OneYwithXFeatureFunction.apply(SparseVector[] x,
int ytm1,
int yt,
int t)
|
SparseVector |
TwoYwithXFeatureFunction.apply(SparseVector[] xseq,
int ytm1,
int yt,
int t)
|
int[] |
LinearTagger.label(SparseVector[] x)
use the Viterbi algorithm to find arg_max_y f(x,y) . |
double[][][] |
LinearTagger.scores(SparseVector[] x)
at each position 0<=t |
Constructors in sequence with parameters of type SparseVector | |
---|---|
SequenceInstance(Alphabet xAlphabet,
Alphabet yAlphabet,
SparseVector[] x,
Object[] y)
|
Uses of SparseVector in types |
---|
Fields in types declared as SparseVector | |
---|---|
SparseVector |
ClassificationInstance.x
|
Methods in types that return SparseVector | |
---|---|
SparseVector |
FeatureFunction.apply(SparseVector x,
int y)
|
static SparseVector |
StaticUtils.lookupCollection(Collection<String> in,
Alphabet a)
|
Methods in types with parameters of type SparseVector | |
---|---|
SparseVector |
FeatureFunction.apply(SparseVector x,
int y)
|
static double |
StaticUtils.dotProduct(SparseVector v,
double[] w)
the dot product between a sparse vector v and a dense vector w. |
int |
LinearClassifier.label(SparseVector x)
computes the classification according to this linear classifier. |
static void |
StaticUtils.plusEquals(double[] w,
SparseVector v)
update: w = w + v |
static void |
StaticUtils.plusEquals(double[] w,
SparseVector v,
double d)
w <- w + d*v |
static void |
StaticUtils.plusEquals(SparseVector w,
SparseVector v)
w <- w + v |
double[] |
LinearClassifier.scores(SparseVector x)
computes the score of each label 'y' defined as f(x,y) . |
Constructors in types with parameters of type SparseVector | |
---|---|
ClassificationInstance(Alphabet xAlphabet,
Alphabet yAlphabet,
SparseVector x,
Object y)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |