Uses of Class
types.SparseVector

Packages that use SparseVector
classification   
sequence   
types   
 

Uses of SparseVector in classification
 

Methods in classification that return SparseVector
 SparseVector CompleteFeatureFunction.apply(SparseVector x, int y)
           
 

Methods in classification with parameters of type SparseVector
 SparseVector CompleteFeatureFunction.apply(SparseVector x, int y)
           
 

Uses of SparseVector in sequence
 

Fields in sequence declared as SparseVector
 SparseVector[] SequenceInstance.x
           
 

Methods in sequence that return SparseVector
 SparseVector SequenceFeatureFunction.apply(SparseVector[] x, int[] y)
          apply the feature function to an entire sequence of y's
 SparseVector OneYwithXFeatureFunction.apply(SparseVector[] x, int[] y)
           
 SparseVector TwoYwithXFeatureFunction.apply(SparseVector[] x, int[] y)
           
 SparseVector SequenceFeatureFunction.apply(SparseVector[] x, int ymt1, int yt, int t)
          apply the feature function to a pair of tags (label positions)
 SparseVector OneYwithXFeatureFunction.apply(SparseVector[] x, int ytm1, int yt, int t)
           
 SparseVector TwoYwithXFeatureFunction.apply(SparseVector[] xseq, int ytm1, int yt, int t)
           
 

Methods in sequence with parameters of type SparseVector
 SparseVector SequenceFeatureFunction.apply(SparseVector[] x, int[] y)
          apply the feature function to an entire sequence of y's
 SparseVector OneYwithXFeatureFunction.apply(SparseVector[] x, int[] y)
           
 SparseVector TwoYwithXFeatureFunction.apply(SparseVector[] x, int[] y)
           
 SparseVector SequenceFeatureFunction.apply(SparseVector[] x, int ymt1, int yt, int t)
          apply the feature function to a pair of tags (label positions)
 SparseVector OneYwithXFeatureFunction.apply(SparseVector[] x, int ytm1, int yt, int t)
           
 SparseVector TwoYwithXFeatureFunction.apply(SparseVector[] xseq, int ytm1, int yt, int t)
           
 int[] LinearTagger.label(SparseVector[] x)
          use the Viterbi algorithm to find arg_max_y f(x,y) .
 double[][][] LinearTagger.scores(SparseVector[] x)
          at each position 0<=t
 

Constructors in sequence with parameters of type SparseVector
SequenceInstance(Alphabet xAlphabet, Alphabet yAlphabet, SparseVector[] x, Object[] y)
           
 

Uses of SparseVector in types
 

Fields in types declared as SparseVector
 SparseVector ClassificationInstance.x
           
 

Methods in types that return SparseVector
 SparseVector FeatureFunction.apply(SparseVector x, int y)
           
static SparseVector StaticUtils.lookupCollection(Collection<String> in, Alphabet a)
           
 

Methods in types with parameters of type SparseVector
 SparseVector FeatureFunction.apply(SparseVector x, int y)
           
static double StaticUtils.dotProduct(SparseVector v, double[] w)
          the dot product between a sparse vector v and a dense vector w.
 int LinearClassifier.label(SparseVector x)
          computes the classification according to this linear classifier.
static void StaticUtils.plusEquals(double[] w, SparseVector v)
          update: w = w + v
static void StaticUtils.plusEquals(double[] w, SparseVector v, double d)
          w <- w + d*v
static void StaticUtils.plusEquals(SparseVector w, SparseVector v)
          w <- w + v
 double[] LinearClassifier.scores(SparseVector x)
          computes the score of each label 'y' defined as f(x,y) .
 

Constructors in types with parameters of type SparseVector
ClassificationInstance(Alphabet xAlphabet, Alphabet yAlphabet, SparseVector x, Object y)
           
 



Copyright © 2009. All Rights Reserved.