A B C D E F G H I L M N O P R S T W X Y

A

accuracy() - Method in class types.Evaluation
 
AdaBoost - Class in classification
 
AdaBoost(int, Alphabet, Alphabet, FeatureFunction) - Constructor for class classification.AdaBoost
 
add(Evaluation) - Method in class types.Evaluation
 
add(int, double) - Method in class types.SparseVector
 
add(double[], double[], double[], double) - Static method in class types.StaticUtils
u = v + d*w
algo - package algo
 
Alphabet - Class in types
This class is used to map from some descriptive features (e.g.
Alphabet() - Constructor for class types.Alphabet
 
apply(SparseVector, int) - Method in class classification.CompleteFeatureFunction
 
apply(SparseVector[], int[]) - Method in class sequence.OneYwithXFeatureFunction
 
apply(SparseVector[], int, int, int) - Method in class sequence.OneYwithXFeatureFunction
 
apply(SparseVector[], int[]) - Method in interface sequence.SequenceFeatureFunction
apply the feature function to an entire sequence of y's
apply(SparseVector[], int, int, int) - Method in interface sequence.SequenceFeatureFunction
apply the feature function to a pair of tags (label positions)
apply(SparseVector[], int[]) - Method in class sequence.TwoYwithXFeatureFunction
 
apply(SparseVector[], int, int, int) - Method in class sequence.TwoYwithXFeatureFunction
 
apply(SparseVector, int) - Method in interface types.FeatureFunction
 
argmax(double[]) - Static method in class types.StaticUtils
computes arg max_i v[i]

B

batchTrain(ArrayList<ClassificationInstance>) - Method in class classification.AdaBoost
 
batchTrain(ArrayList<ClassificationInstance>) - Method in class classification.MaxEntropy
 
batchTrain(ArrayList<ClassificationInstance>) - Method in class classification.Mira
 
batchTrain(ArrayList<ClassificationInstance>) - Method in class classification.NaiveBayes
 
batchTrain(ArrayList<ClassificationInstance>) - Method in class classification.Perceptron
 
batchTrain(ArrayList<SequenceInstance>) - Method in class sequence.CRF
 
batchTrain(ArrayList<SequenceInstance>) - Method in class sequence.Mira
 
batchTrain(ArrayList<SequenceInstance>) - Method in class sequence.Perceptron
 

C

calculate(int, int) - Method in interface classification.Loss
 
calculate(int, int) - Method in class classification.PrecRecLoss
 
calculate(int[], int[]) - Method in class sequence.HammingLoss
 
calculate(int[], int[]) - Method in interface sequence.Loss
 
calculate(int[], int[]) - Method in class sequence.PrecRecLoss
 
classification - package classification
 
ClassificationInstance - Class in types
 
ClassificationInstance(Alphabet, Alphabet, SparseVector, Object) - Constructor for class types.ClassificationInstance
 
claz - Variable in class sequence.EvalResult
 
CompleteFeatureFunction - Class in classification
 
CompleteFeatureFunction(Alphabet, Alphabet) - Constructor for class classification.CompleteFeatureFunction
 
computeAccuracy(LinearClassifier, ArrayList<ClassificationInstance>) - Static method in class types.StaticUtils
The accuracy of classifier h on the data set data.
computeAccuracyS(LinearTagger, ArrayList<SequenceInstance>) - Static method in class types.StaticUtils
The accuracy of classifier h on the data set data.
ConjugateGradient - Class in algo
 
ConjugateGradient(int) - Constructor for class algo.ConjugateGradient
 
correct - Variable in class types.Evaluation
 
CRF - Class in sequence
 
CRF(double, Alphabet, Alphabet, SequenceFeatureFunction) - Constructor for class sequence.CRF
 

D

defalutFeatureIndex - Variable in class classification.CompleteFeatureFunction
this is the last feature for each y
DifferentiableObjective - Interface in types
 
dotProduct(SparseVector, double[]) - Static method in class types.StaticUtils
the dot product between a sparse vector v and a dense vector w.
dotProduct(double[], double[]) - Static method in class types.StaticUtils
 

E

end - Variable in class io.Span
 
equals(Object) - Method in class sequence.EvalResult
 
eval(LinearClassifier, ArrayList<ClassificationInstance>, int) - Static method in class classification.Evaluate
Compute evaluation of entire instance list, with respect to a single tag.
eval(LinearClassifier, ArrayList<ClassificationInstance>) - Static method in class classification.Evaluate
 
eval(LinearClassifier, ClassificationInstance, int) - Static method in class classification.Evaluate
Compute evaluation of entire instance list, with respect to a single tag.
eval(int, int, int) - Static method in class classification.Evaluate
 
eval(LinearTagger, ArrayList<SequenceInstance>, int) - Static method in class sequence.Evaluate
Compute evaluation of entire instance list, with respect to a single tag.
eval(LinearTagger, SequenceInstance, int) - Static method in class sequence.Evaluate
Compute evaluation of entire instance list, with respect to a single tag.
eval(int[], int[], int) - Static method in class sequence.Evaluate
 
EvalResult - Class in sequence
 
EvalResult(String, String) - Constructor for class sequence.EvalResult
 
Evaluate - Class in classification
 
Evaluate() - Constructor for class classification.Evaluate
 
Evaluate - Class in sequence
 
Evaluate() - Constructor for class sequence.Evaluate
 
Evaluation - Class in types
 
Evaluation(int, int, int, int, int) - Constructor for class types.Evaluation
 
exp(double[]) - Static method in class types.StaticUtils
res = exp(vec)
exp(double[][]) - Static method in class types.StaticUtils
res = exp(vec)
exp(double[][][]) - Static method in class types.StaticUtils
res = exp(vec)
experiments - package experiments
 

F

FeatureFunction - Interface in types
 
fn - Variable in class types.Evaluation
 
fp - Variable in class types.Evaluation
 
fscore() - Method in class types.Evaluation
 

G

getGradient(double[]) - Method in class experiments.TestMaximization
 
getGradient(double[]) - Method in interface types.DifferentiableObjective
 
getIndexAt(int) - Method in class types.SparseVector
 
getNumParameters() - Method in class experiments.TestMaximization
 
getNumParameters() - Method in interface types.DifferentiableObjective
 
getParameters(double[]) - Method in class experiments.TestMaximization
 
getParameters(double[]) - Method in interface types.DifferentiableObjective
 
getValue() - Method in class experiments.TestMaximization
 
getValue() - Method in interface types.DifferentiableObjective
 
getValueAt(int) - Method in class types.SparseVector
 
GradientAscent - Class in algo
 
GradientAscent() - Constructor for class algo.GradientAscent
 

H

HammingLoss - Class in sequence
This class implements Hamming Loss function
HammingLoss() - Constructor for class sequence.HammingLoss
 
hashCode() - Method in class sequence.EvalResult
 

I

InternetAdReader - Class in io
 
InternetAdReader(Alphabet, Alphabet) - Constructor for class io.InternetAdReader
 
InternetAds - Class in experiments
 
InternetAds() - Constructor for class experiments.InternetAds
 
io - package io
 

L

label(SparseVector[]) - Method in class sequence.LinearTagger
use the Viterbi algorithm to find arg_max_y f(x,y) .
label(SparseVector) - Method in class types.LinearClassifier
computes the classification according to this linear classifier.
LinearClassifier - Class in types
A linear model for classification.
LinearClassifier(Alphabet, Alphabet, FeatureFunction) - Constructor for class types.LinearClassifier
 
LinearTagger - Class in sequence
A linear model for sequence classification.
LinearTagger(Alphabet, Alphabet, SequenceFeatureFunction) - Constructor for class sequence.LinearTagger
 
lineSearch(DifferentiableObjective, double[], double[]) - Method in class algo.ConjugateGradient
finds the maximizer of o(parameters + lambda*direction)
loadTagger(String) - Static method in class types.StaticUtils
 
lookupCollection(Collection<String>, Alphabet) - Static method in class types.StaticUtils
 
lookupIndex(int) - Method in class types.Alphabet
 
lookupInt(int) - Method in class types.Alphabet
returns the string representation of feature associated with a index.
lookupObject(Object) - Method in class types.Alphabet
returns the index associated with a feature.
Loss - Interface in classification
This class defines the contract we hava for loss function
Loss - Interface in sequence
This class defines the contract we hava for loss function

M

main(String[]) - Static method in class classification.AdaBoost
 
main(String[]) - Static method in class experiments.InternetAds
 
main(String[]) - Static method in class experiments.Newsgroups
 
main(String[]) - Static method in class experiments.PartOfSpeech
 
main(String[]) - Static method in class experiments.TestMaximization
 
MaxEntropy - Class in classification
 
MaxEntropy(double, Alphabet, Alphabet, FeatureFunction) - Constructor for class classification.MaxEntropy
 
maximize(DifferentiableObjective) - Method in class algo.ConjugateGradient
 
maximize(DifferentiableObjective) - Method in class algo.GradientAscent
 
Mira - Class in classification
 
Mira(boolean, int, Alphabet, Alphabet, CompleteFeatureFunction, Loss) - Constructor for class classification.Mira
 
Mira - Class in sequence
 
Mira(boolean, int, Alphabet, Alphabet, SequenceFeatureFunction, Loss) - Constructor for class sequence.Mira
 

N

NaiveBayes - Class in classification
 
NaiveBayes(double, double, Alphabet, Alphabet) - Constructor for class classification.NaiveBayes
 
Newsgroups - Class in experiments
 
Newsgroups() - Constructor for class experiments.Newsgroups
 
NewsgroupsReader - Class in io
 
NewsgroupsReader(Alphabet, Alphabet) - Constructor for class io.NewsgroupsReader
 
numEntries() - Method in class types.SparseVector
 
numGradientCalls - Variable in class experiments.TestMaximization
 
numInputs - Variable in class sequence.TwoYwithXFeatureFunction
 
numValueCalls - Variable in class experiments.TestMaximization
 

O

OneYwithXFeatureFunction - Class in sequence
 
OneYwithXFeatureFunction(Alphabet, Alphabet) - Constructor for class sequence.OneYwithXFeatureFunction
 

P

params - Variable in class experiments.TestMaximization
 
PartOfSpeech - Class in experiments
 
PartOfSpeech() - Constructor for class experiments.PartOfSpeech
 
PartOfSpeechReader - Class in io
 
PartOfSpeechReader(Alphabet, Alphabet) - Constructor for class io.PartOfSpeechReader
 
Perceptron - Class in classification
 
Perceptron(boolean, int, Alphabet, Alphabet, FeatureFunction) - Constructor for class classification.Perceptron
 
Perceptron - Class in sequence
 
Perceptron(boolean, int, Alphabet, Alphabet, SequenceFeatureFunction) - Constructor for class sequence.Perceptron
 
plusEquals(double[], SparseVector) - Static method in class types.StaticUtils
update: w = w + v
plusEquals(SparseVector, SparseVector) - Static method in class types.StaticUtils
w <- w + v
plusEquals(double[], SparseVector, double) - Static method in class types.StaticUtils
w <- w + d*v
plusEquals(double[], double[], double) - Static method in class types.StaticUtils
w <- w + d*v
precision() - Method in class types.Evaluation
 
PrecRecLoss - Class in classification
This class implements a loss function for high precision or recall.
PrecRecLoss(int, double) - Constructor for class classification.PrecRecLoss
 
PrecRecLoss - Class in sequence
This class implements a loss function for high precision or recall.
PrecRecLoss(int, double) - Constructor for class sequence.PrecRecLoss
 
printArray(double[]) - Method in class classification.AdaBoost
 

R

readFile(String) - Method in class io.InternetAdReader
 
readFile(String) - Method in class io.NewsgroupsReader
 
readFile(String) - Method in class io.PartOfSpeechReader
 
readObject(ObjectInputStream) - Method in class sequence.LinearTagger
 
readObject(ObjectInputStream) - Method in class types.LinearClassifier
 
recall() - Method in class types.Evaluation
 
reset() - Method in class experiments.TestMaximization
 

S

saveTagger(LinearTagger, String) - Static method in class types.StaticUtils
 
scores(SparseVector[]) - Method in class sequence.LinearTagger
at each position 0<=tscores(SparseVector) - Method in class types.LinearClassifier
computes the score of each label 'y' defined as f(x,y) .
sequence - package sequence
 
SequenceFeatureFunction - Interface in sequence
 
SequenceInstance - Class in sequence
 
SequenceInstance(Alphabet, Alphabet, SparseVector[], Object[]) - Constructor for class sequence.SequenceInstance
 
setParameters(double[]) - Method in class experiments.TestMaximization
 
setParameters(double[]) - Method in interface types.DifferentiableObjective
 
shuffle(ArrayList, long) - Static method in class types.StaticUtils
shuffle a list (intended as a list of instances) in place using seed as the random seed.
size() - Method in class types.Alphabet
 
Span - Class in io
 
Span(int, int, String) - Constructor for class io.Span
 
span - Variable in class sequence.EvalResult
 
SparseVector - Class in types
a sparse vector implementation.
SparseVector() - Constructor for class types.SparseVector
 
split(ArrayList<ClassificationInstance>, int) - Static method in class types.StaticUtils
 
splitS(ArrayList<SequenceInstance>, int) - Static method in class types.StaticUtils
 
start - Variable in class io.Span
 
startGrowth() - Method in class types.Alphabet
 
StaticUtils - Class in types
Some methods that are useful to have in linear models.
StaticUtils() - Constructor for class types.StaticUtils
 
stopGrowth() - Method in class types.Alphabet
at test time, we need to stop the growth of the alphabet so we do not increase the size of the feature vector in case the user tries to use features not encountered at training time.
sum(double[]) - Static method in class types.StaticUtils
 

T

TestMaximization - Class in experiments
 
TestMaximization(double[], double[]) - Constructor for class experiments.TestMaximization
 
tn - Variable in class types.Evaluation
 
toString() - Method in class types.ClassificationInstance
 
toString() - Method in class types.Evaluation
 
toString() - Method in class types.SparseVector
 
total - Variable in class types.Evaluation
 
tp - Variable in class types.Evaluation
 
trainAdaBoost(int, ArrayList<ClassificationInstance>, Alphabet, Alphabet) - Static method in class experiments.InternetAds
 
trainCRF(ArrayList<SequenceInstance>, Alphabet, Alphabet) - Static method in class experiments.PartOfSpeech
 
trainMaxEnt(ArrayList<ClassificationInstance>, Alphabet, Alphabet) - Static method in class experiments.InternetAds
 
trainMaxEnt(ArrayList<ClassificationInstance>, Alphabet, Alphabet) - Static method in class experiments.Newsgroups
 
trainMira(boolean, int, ArrayList<SequenceInstance>, Alphabet, Alphabet) - Static method in class experiments.PartOfSpeech
 
trainNaivBayes(ArrayList<ClassificationInstance>, Alphabet, Alphabet) - Static method in class experiments.InternetAds
 
trainNaivBayes(ArrayList<ClassificationInstance>, Alphabet, Alphabet) - Static method in class experiments.Newsgroups
 
trainPerceptron(boolean, int, ArrayList<ClassificationInstance>, Alphabet, Alphabet) - Static method in class experiments.InternetAds
 
trainPerceptron(boolean, int, ArrayList<ClassificationInstance>, Alphabet, Alphabet) - Static method in class experiments.Newsgroups
 
trainPerceptron(boolean, int, ArrayList<SequenceInstance>, Alphabet, Alphabet) - Static method in class experiments.PartOfSpeech
 
twoNormSquared(double[]) - Static method in class types.StaticUtils
 
TwoYwithXFeatureFunction - Class in sequence
 
TwoYwithXFeatureFunction(Alphabet, Alphabet) - Constructor for class sequence.TwoYwithXFeatureFunction
 
type - Variable in class io.Span
 
types - package types
 

W

w - Variable in class sequence.LinearTagger
 
w - Variable in class types.LinearClassifier
 
writeObject(ObjectOutputStream) - Method in class sequence.LinearTagger
 
writeObject(ObjectOutputStream) - Method in class types.LinearClassifier
 
wSize() - Method in class classification.CompleteFeatureFunction
 
wSize() - Method in class sequence.OneYwithXFeatureFunction
 
wSize() - Method in interface sequence.SequenceFeatureFunction
 
wSize() - Method in class sequence.TwoYwithXFeatureFunction
 
wSize() - Method in interface types.FeatureFunction
 

X

x - Variable in class sequence.SequenceInstance
 
x - Variable in class types.ClassificationInstance
 
xAlphabet - Variable in class sequence.SequenceInstance
 
xAlphabet - Variable in class types.ClassificationInstance
 
xAlphabet - Variable in class types.LinearClassifier
 
xAsize - Variable in class sequence.OneYwithXFeatureFunction
 
xAsize - Variable in class sequence.TwoYwithXFeatureFunction
 

Y

y - Variable in class sequence.SequenceInstance
 
y - Variable in class types.ClassificationInstance
 
yAlphabet - Variable in class sequence.SequenceInstance
 
yAlphabet - Variable in class types.ClassificationInstance
 
yAlphabet - Variable in class types.LinearClassifier
 
yAsize - Variable in class sequence.OneYwithXFeatureFunction
 
yAsize - Variable in class sequence.TwoYwithXFeatureFunction
 

A B C D E F G H I L M N O P R S T W X Y

Copyright © 2009. All Rights Reserved.