|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use ClassificationInstance | |
---|---|
classification | |
experiments | |
io | |
types |
Uses of ClassificationInstance in classification |
---|
Methods in classification with parameters of type ClassificationInstance | |
---|---|
static Evaluation |
Evaluate.eval(LinearClassifier h,
ClassificationInstance inst,
int tagOfInterest)
Compute evaluation of entire instance list, with respect to a single tag. |
Method parameters in classification with type arguments of type ClassificationInstance | |
---|---|
LinearClassifier |
NaiveBayes.batchTrain(ArrayList<ClassificationInstance> trainingData)
|
LinearClassifier |
MaxEntropy.batchTrain(ArrayList<ClassificationInstance> trainingData)
|
LinearClassifier |
AdaBoost.batchTrain(ArrayList<ClassificationInstance> trainingData)
|
LinearClassifier |
Mira.batchTrain(ArrayList<ClassificationInstance> trainingData)
|
LinearClassifier |
Perceptron.batchTrain(ArrayList<ClassificationInstance> trainingData)
|
static Evaluation[] |
Evaluate.eval(LinearClassifier h,
ArrayList<ClassificationInstance> data)
|
static Evaluation |
Evaluate.eval(LinearClassifier h,
ArrayList<ClassificationInstance> data,
int tagOfInterest)
Compute evaluation of entire instance list, with respect to a single tag. |
Uses of ClassificationInstance in experiments |
---|
Method parameters in experiments with type arguments of type ClassificationInstance | |
---|---|
static LinearClassifier |
InternetAds.trainAdaBoost(int numIters,
ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
Newsgroups.trainMaxEnt(ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
InternetAds.trainMaxEnt(ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
Newsgroups.trainNaivBayes(ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
InternetAds.trainNaivBayes(ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
Newsgroups.trainPerceptron(boolean doAveraging,
int numIters,
ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
InternetAds.trainPerceptron(boolean doAveraging,
int numIters,
ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
Uses of ClassificationInstance in io |
---|
Methods in io that return types with arguments of type ClassificationInstance | |
---|---|
ArrayList<ClassificationInstance> |
InternetAdReader.readFile(String dataLoc)
|
ArrayList<ClassificationInstance> |
NewsgroupsReader.readFile(String dataLoc)
|
Uses of ClassificationInstance in types |
---|
Method parameters in types with type arguments of type ClassificationInstance | |
---|---|
static double |
StaticUtils.computeAccuracy(LinearClassifier h,
ArrayList<ClassificationInstance> data)
The accuracy of classifier h on the data set data. |
static ArrayList<ClassificationInstance>[] |
StaticUtils.split(ArrayList<ClassificationInstance> l,
int splitAt)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |