Constructors in classification with parameters of type Alphabet |
AdaBoost(int numIterations,
Alphabet xAlphabet,
Alphabet yAlphabet,
FeatureFunction fxy)
|
CompleteFeatureFunction(Alphabet xAlphabet,
Alphabet yAlphabet)
|
MaxEntropy(double gaussianPriorVariance,
Alphabet xAlphabet,
Alphabet yAlphabet,
FeatureFunction fxy)
|
Mira(boolean performAveraging,
int numIterations,
Alphabet xAlphabet,
Alphabet yAlphabet,
CompleteFeatureFunction fxy,
Loss loss)
|
NaiveBayes(double smoothTrue,
double smoothFalse,
Alphabet xAlphabet,
Alphabet yAlphabet)
|
Perceptron(boolean performAveraging,
int numIterations,
Alphabet xAlphabet,
Alphabet yAlphabet,
FeatureFunction fxy)
|
Methods in experiments with parameters of type Alphabet |
static LinearClassifier |
InternetAds.trainAdaBoost(int numIters,
ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearTagger |
PartOfSpeech.trainCRF(ArrayList<SequenceInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
Newsgroups.trainMaxEnt(ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
InternetAds.trainMaxEnt(ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearTagger |
PartOfSpeech.trainMira(boolean doAveraging,
int numIters,
ArrayList<SequenceInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
Newsgroups.trainNaivBayes(ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
InternetAds.trainNaivBayes(ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
Newsgroups.trainPerceptron(boolean doAveraging,
int numIters,
ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearClassifier |
InternetAds.trainPerceptron(boolean doAveraging,
int numIters,
ArrayList<ClassificationInstance> train,
Alphabet xA,
Alphabet yA)
|
static LinearTagger |
PartOfSpeech.trainPerceptron(boolean doAveraging,
int numIters,
ArrayList<SequenceInstance> train,
Alphabet xA,
Alphabet yA)
|
Constructors in sequence with parameters of type Alphabet |
CRF(double gaussianPriorVariance,
Alphabet xAlphabet,
Alphabet yAlphabet,
SequenceFeatureFunction fxy)
|
LinearTagger(Alphabet xAlpha,
Alphabet yAlpha,
SequenceFeatureFunction fxy)
|
Mira(boolean performAveraging,
int numIterations,
Alphabet xAlphabet,
Alphabet yAlphabet,
SequenceFeatureFunction fxy,
Loss loss)
|
OneYwithXFeatureFunction(Alphabet xAlphabet,
Alphabet yAlphabet)
|
Perceptron(boolean performAveraging,
int numIterations,
Alphabet xAlphabet,
Alphabet yAlphabet,
SequenceFeatureFunction fxy)
|
SequenceInstance(Alphabet xAlphabet,
Alphabet yAlphabet,
SparseVector[] x,
Object[] y)
|
TwoYwithXFeatureFunction(Alphabet xAlphabet,
Alphabet yAlphabet)
|